
CALCULATION OF TEMPERATURES AND TEMPERATURE
STRESSES IN A STEEL CYLINDRICAL BILLET WITH AN
INTERNAL HEAT SOURCE

Yu. S. Postol’nik,a V. I. Timoshpol’skii,b

D. N. Andrianov,b and G. A. Shcherbinskayaa
UDC 621.78.065.2

The solution of the problem of heat conduction and thermoelasticity of a cylinder in induction heating has
been obtained with the method of equivalent sources. An example of calculation of the temperature and ther-
mal-stress fields for different grades of steel has been given.

Introduction. One of the most progressive methods of high-speed heating of metals before the corresponding
pressure treatment (rolling, forging, and stamping) is induction heating [1, 2]. This is particularly true of alloy steels
which possess a higher-than-average strain resistance and a high sensitivity to thermal stresses. A comparative analysis
of the economic indices of the induction (direct) and flame (indirect) methods of heating unconditionally counts in
favor of the former: decarbonization and scaling are reduced several times, the wear of tools (rolls and dies) and re-
jects decrease, and the yield of high-quality metal increases, which is of particular importance for expensive metals.
Therefore, the corresponding theoretical investigations and effective procedures of calculation of the temperature and
thermal-stress fields are necessary for improvement of induction plants and regimes of heating of metals.

In certain literature sources (for example, [2, 3]), one notes another positive property of induction heating: di-
rect heating by internal sources distributed throughout the volume of a body removes the problem on temperature
stresses. However there is also another viewpoint: "The resulting temperature fields and stresses can attain a consider-
able value and exceed permissible values" ([4], p. 5).

Thus, the development of procedures of calculation of temperatures and thermal stresses in ingots and billets in
induction heating is a topical problem. Below we give the solution of the corresponding problem (of heat conduction and
thermoelasticity) in induction heating of cylindrical ingots and billets on the basis of the method of equivalent sources.

Formulation and Solution of the Problem. Let us consider a long continuous cylinder of diameter 2R with
an initial temperature of T0 = const. In view of the very short duration of the initial stage of warming up, we will
consider the steady-state regime of heating of the metal. The heat loss to the ambient medium is disregarded, i.e., the
cylinder is considered to be heat-insulated.

In this case, the corresponding boundary-value problem of heat conduction has the form
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Taking the solution of problem (1), (2) as the "load" function θ(ρ, τ), we determine the thermally stressed
state of the cylinder by the well-known (for example, [5–9]) solution of the corresponding quasistatic unconnected
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thermoelasticity problem determining three components of the stress tensor: the radial (σr), tangential (σϕ), and axial
(σz) components:
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The analytical solution of the boundary-value problem of heat conduction (1), (2) is known [10]. However, it
is represented by an unbounded series containing Bessel functions and exponential time functions that necessitate solu-
tion of transcendental equations for determination of characteristic numbers. The structural complexity of such a solu-
tion presents certain practical difficulties in calculations of the temperature and particularly the thermally stressed state
of the cylinder. Meanwhile, different approximate analytical methods yielding solutions very simple in form and quite
exact as far as calculation results are concerned are widely used in applied heat engineering. Among these methods is
the method of equivalent sources having manifested itself well in solution of a wide class of linear and nonlinear
problems of heat conduction and thermomechanics [6, 7], including the cases with allowance for the action of continu-
ously distributed internal heat sources [11]. Let us apply this method to problem (1), (2). We take the resolvent of the
method of equivalent sources in the form
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(6)

where the "equivalent source" f(τ) is determined by the integral condition
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Integrating Eq. (6) with respect to ρ, we obtain
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Substituting expression (8) into boundary conditions (2), we find
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4

 exp (− 2) ,   f (τ) = 
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after which the heat flux is determined by the function
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Integrating expression (10) with respect to ρ, we obtain
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where we have introduced the function
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It is clear that the arbitrary function of integration B(τ) is related to the temperature of the center of the cyl-

inder cross section by the expression B(τ) = θc(τ) + Po 
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4
. This enables us to write the solution in the following

form:

θ (ρ, τ) = θc (τ) + 
Po
4

 




(1 + exp (− 2)) ρ2

2
 + exp (− 2) [1 − exp (2ρ) + Φ (ρ)]




 .

(13)

Substituting the expressions of f(τ) from (9) and θ(ρ, τ) from (13) into integral condition (7), we obtain the
differential equation 2dθc(τ) = Po (1 + exp (− 2))dτ after whose integration, with account for initial (τ = τ0) condition
(2), we determine the temperature function of the center of the cylinder cross section

θc (τ) = 
Po
2

 (1 + exp (− 2)) (τ − τ0) (14)

and the final solution of the thermal problem
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By direct substitution of expression (15) into the initial mathematical model we easily assure ourselves that
the approximate solution obtained exactly satisfies the differential heat-conduction equation (1) and all boundary con-
ditions (2). The degree of approximation of the solution (15) is that it does not cover the initial stage (0 ≤ τ ≤ τ0) of
warming up specified by the classical Fourier theory; by the end of this stage, there forms the initial (for the steady-
state regime τ ≥ τ0) temperature field described, according to our solution, by the function
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This period is very brief and it is usually disregarded [2, 3]. As far as the solution (15) is concerned, the nu-
merical experiment has shown a fairly high accuracy of the results obtained with the method of equivalent sources in
many problems, including those with allowance for internal heat sources [9].

It is common knowledge that between the radial, tangential, and axial stresses in a free cylinder, there is the
relationship σz = σr + σϕ for which, for the continuous cylinder, we have σr(1) = 0 and σϕ(1) = σz on the surface
(ρ = 1) and σr(0) = σϕ(0) = σz(0)/2 at the center of the cross section (ρ = 0). On this basis, for investigation of the
thermally stressed state of the cylinder it is sufficient to determine the axial stresses. We emphasize that the solution
(15) contains the integral of Φ(ρ) (12) that is not taken in quadratures. This presents certain difficulties when one
seeks to obtain the analytical solution. The analysis of the integrand ϕ(ρ) (12) shows that it represents a smooth curve
varying within the limits 2 ≤ ϕ(ρ) ≤ (exp (2) − 1).

Let us approximate the function ϕ(ρ) (12) by the parabola ϕ
__

(ρ) = b + cρ + dρ2 whose values, at three points,
coincide with the values of the functions ϕ(ρ): ϕ

__
(0) = ϕ(0) = 2, ϕ

__
(0, 5) = ϕ(0, 5) = 2(exp − 1), and ϕ

__
(1) = ϕ(1) =

exp (2) − 1. Solving the corresponding system of three algebraic equations, we find the necessary coefficients b, c, and
d and then the function
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Since the function ϕ
__

(ρ) from (17) is involved in the solution (15) in the integral form Φ (12), the error of
the performed approximation of (17) will be somewhat smoothed.

In such a case the function θ(ρ, τ) of (15) takes the form
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We substitute the "load" function of (18) into the solution (15) of the problem of thermoelasticity of the cyl-
inder. After simple transformation we have
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Expressions (15) and (19) completely determine the temperature and thermally stressed states of the cylinder
under the conditions of steady-state heating.

With the use of the solution obtained for the problem of heat conduction and thermoelasticity we carry out
calculations of cylindrical billets of radius R = 0.2 m for two grades of steel: St.10 low-carbon steel ((1)) and
KhI8N9T heat-resistant steel ((2)) whose necessary characteristics are given in Table 1. The surface heat flux will be
taken to be qs = 5⋅105 W/m2 [2].

Figure 1 shows the fields of the relative values of the heat flux q
_

(ρ) = q(ρ)/qs, the temperature θ
__

(ρ) =
4[θ(ρ) − θc]/Po, and the axial stress σ

__
z = σ/(KσPo).

Passing to the absolute values of the stresses, we compute the necessary numbers from the data of Table 1:
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5

1 − 0.28
 Tf = 3.40Tf ,   Kσ2

 = 
1.7⋅10

−5⋅1.92⋅10
5
Tf

1 − 0.253
 = 4.37Tf .

TABLE 1. Thermophysical Characteristics of St.10 and KhI8N9T Steels [4]

Billet No. Steel grade λ, W/(m⋅K) αT⋅105, 1/K E⋅105, MPa ν
1 St.10 73.3 1.16 2.11 0.28

2 KhI8N9T 16.7 1.70 1.92 0.253

Fig. 1. Distributions of the relative heat flux q
_

(ρ) (a), the function of tempera-
ture θ

__
(ρ) (b), and the function of axial stresses σ

__
z(ρ) (c) along the cylinder ra-

dius.
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Employing the data obtained and Fig. 1c, we find

σzmax

(1)
 = 3.32⋅10

−2⋅3.4⋅1.3⋅10
3
 = 147 MPa ,

σzmax

(2)
 = 3.32⋅10

−2⋅4.37⋅6⋅10
3
 = 870 MPa .

It is clear that the values of the maximum thermal stresses developing in the cylindrical billet in induction
heating substantially depend on the thermophysical and physicomechanical properties of the steel.

Conclusions. We have obtained the solution of the problem of thermomechanics (in induction heating); the
approximate solution of the heat-conduction problem, which is based on the use of the method of equivalent sources,
has been employed. The results of calculation of temperatures, thermal stresses, and heat fluxes in heating of cylindri-
cal billets have shown an accuracy sufficient for engineering practice. The solution obtained for the problem of heat
conduction and thermomechanics can be recommended for the calculation practice of induction heating of metal.

NOTATION

a, thermal diffusivity of the body; E, elastic modulus; Kσ, coefficient of conversion of dimensionless stresses
to dimensional stresses; Po, Pomerantsev number; qs, surface density of the heat flux; R, cylinder radius; T(r, t), T0,
and Tf, running, initial, and final temperature; t, time; r, absolute coordinate; αT, coefficient of linear expansion of the
body; λ, thermal conductivity of the body; ν, Poisson coefficient; θ and θc, dimensionless running temperature and
temperature of the center; ρ, dimensionless coordinate; τ0 and τ, dimensionless initial and running time; σ, running
stress; σ

__
r, σ

__
ϕ, and σ

__
z, dimensionless radial, tangential, and axial components of the stress tensor. Subscripts: f, final

value; cr, crystallization; s, surface; c, center; 0, initial value; max, maximum.
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